Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reinforcement Learning -based Adaptation and Scheduling Methods for Multi-source DASH (2308.11621v1)

Published 25 Jul 2023 in cs.NI and cs.AI

Abstract: Dynamic adaptive streaming over HTTP (DASH) has been widely used in video streaming recently. In DASH, the client downloads video chunks in order from a server. The rate adaptation function at the video client enhances the user's quality-of-experience (QoE) by choosing a suitable quality level for each video chunk to download based on the network condition. Today networks such as content delivery networks, edge caching networks, content-centric networks,... usually replicate video contents on multiple cache nodes. We study video streaming from multiple sources in this work. In multi-source streaming, video chunks may arrive out of order due to different conditions of the network paths. Hence, to guarantee a high QoE, the video client needs not only rate adaptation but also chunk scheduling. Reinforcement learning (RL) has emerged as the state-of-the-art control method in various fields in recent years. This paper proposes two algorithms for streaming from multiple sources: RL-based adaptation with greedy scheduling (RLAGS) and RL-based adaptation and scheduling (RLAS). We also build a simulation environment for training and evaluating. The efficiency of the proposed algorithms is proved via extensive simulations with real-trace data.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.