Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unsupervised Prototype Adapter for Vision-Language Models (2308.11507v2)

Published 22 Aug 2023 in cs.CV and cs.CL

Abstract: Recently, large-scale pre-trained vision-LLMs (e.g. CLIP and ALIGN) have demonstrated remarkable effectiveness in acquiring transferable visual representations. To leverage the valuable knowledge encoded within these models for downstream tasks, several fine-tuning approaches, including prompt tuning methods and adapter-based methods, have been developed to adapt vision-LLMs effectively with supervision. However, these methods rely on the availability of annotated samples, which can be labor-intensive and time-consuming to acquire, thus limiting scalability. To address this issue, in this work, we design an unsupervised fine-tuning approach for vision-LLMs called Unsupervised Prototype Adapter (UP-Adapter). Specifically, for the unannotated target datasets, we leverage the text-image aligning capability of CLIP to automatically select the most confident samples for each class. Utilizing these selected samples, we generate class prototypes, which serve as the initialization for the learnable prototype model. After fine-tuning, the prototype model prediction is combined with the original CLIP's prediction by a residual connection to perform downstream recognition tasks. Our extensive experimental results on image recognition and domain generalization show that the proposed unsupervised method outperforms 8-shot CoOp, 8-shot Tip-Adapter, and also the state-of-the-art UPL method by large margins.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube