Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Pre-training with Aspect-Content Text Mutual Prediction for Multi-Aspect Dense Retrieval (2308.11474v1)

Published 22 Aug 2023 in cs.IR

Abstract: Grounded on pre-trained LLMs (PLMs), dense retrieval has been studied extensively on plain text. In contrast, there has been little research on retrieving data with multiple aspects using dense models. In the scenarios such as product search, the aspect information plays an essential role in relevance matching, e.g., category: Electronics, Computers, and Pet Supplies. A common way of leveraging aspect information for multi-aspect retrieval is to introduce an auxiliary classification objective, i.e., using item contents to predict the annotated value IDs of item aspects. However, by learning the value embeddings from scratch, this approach may not capture the various semantic similarities between the values sufficiently. To address this limitation, we leverage the aspect information as text strings rather than class IDs during pre-training so that their semantic similarities can be naturally captured in the PLMs. To facilitate effective retrieval with the aspect strings, we propose mutual prediction objectives between the text of the item aspect and content. In this way, our model makes more sufficient use of aspect information than conducting undifferentiated masked language modeling (MLM) on the concatenated text of aspects and content. Extensive experiments on two real-world datasets (product and mini-program search) show that our approach can outperform competitive baselines both treating aspect values as classes and conducting the same MLM for aspect and content strings. Code and related dataset will be available at the URL \footnote{https://github.com/sunxiaojie99/ATTEMPT}.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube