Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Extracting Relational Triples Based on Graph Recursive Neural Network via Dynamic Feedback Forest Algorithm (2308.11411v1)

Published 22 Aug 2023 in cs.CL

Abstract: Extracting relational triples (subject, predicate, object) from text enables the transformation of unstructured text data into structured knowledge. The named entity recognition (NER) and the relation extraction (RE) are two foundational subtasks in this knowledge generation pipeline. The integration of subtasks poses a considerable challenge due to their disparate nature. This paper presents a novel approach that converts the triple extraction task into a graph labeling problem, capitalizing on the structural information of dependency parsing and graph recursive neural networks (GRNNs). To integrate subtasks, this paper proposes a dynamic feedback forest algorithm that connects the representations of subtasks by inference operations during model training. Experimental results demonstrate the effectiveness of the proposed method.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)