Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using and Abusing Equivariance (2308.11316v1)

Published 22 Aug 2023 in cs.CV

Abstract: In this paper we show how Group Equivariant Convolutional Neural Networks use subsampling to learn to break equivariance to their symmetries. We focus on 2D rotations and reflections and investigate the impact of broken equivariance on network performance. We show that a change in the input dimension of a network as small as a single pixel can be enough for commonly used architectures to become approximately equivariant, rather than exactly. We investigate the impact of networks not being exactly equivariant and find that approximately equivariant networks generalise significantly worse to unseen symmetries compared to their exactly equivariant counterparts. However, when the symmetries in the training data are not identical to the symmetries of the network, we find that approximately equivariant networks are able to relax their own equivariant constraints, causing them to match or outperform exactly equivariant networks on common benchmark datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tom Edixhoven (1 paper)
  2. Attila Lengyel (15 papers)
  3. Jan van Gemert (62 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.