Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MISSRec: Pre-training and Transferring Multi-modal Interest-aware Sequence Representation for Recommendation (2308.11175v2)

Published 22 Aug 2023 in cs.IR, cs.AI, and cs.MM

Abstract: The goal of sequential recommendation (SR) is to predict a user's potential interested items based on her/his historical interaction sequences. Most existing sequential recommenders are developed based on ID features, which, despite their widespread use, often underperform with sparse IDs and struggle with the cold-start problem. Besides, inconsistent ID mappings hinder the model's transferability, isolating similar recommendation domains that could have been co-optimized. This paper aims to address these issues by exploring the potential of multi-modal information in learning robust and generalizable sequence representations. We propose MISSRec, a multi-modal pre-training and transfer learning framework for SR. On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal user interests while a novel interest-aware decoder is developed to grasp item-modality-interest relations for better sequence representation. On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation, providing more precise matching between users and items. We pre-train the model with contrastive learning objectives and fine-tune it in an efficient manner. Extensive experiments demonstrate the effectiveness and flexibility of MISSRec, promising a practical solution for real-world recommendation scenarios. Data and code are available on \url{https://github.com/gimpong/MM23-MISSRec}.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.