Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

LibreFace: An Open-Source Toolkit for Deep Facial Expression Analysis (2308.10713v2)

Published 18 Aug 2023 in cs.CV

Abstract: Facial expression analysis is an important tool for human-computer interaction. In this paper, we introduce LibreFace, an open-source toolkit for facial expression analysis. This open-source toolbox offers real-time and offline analysis of facial behavior through deep learning models, including facial action unit (AU) detection, AU intensity estimation, and facial expression recognition. To accomplish this, we employ several techniques, including the utilization of a large-scale pre-trained network, feature-wise knowledge distillation, and task-specific fine-tuning. These approaches are designed to effectively and accurately analyze facial expressions by leveraging visual information, thereby facilitating the implementation of real-time interactive applications. In terms of Action Unit (AU) intensity estimation, we achieve a Pearson Correlation Coefficient (PCC) of 0.63 on DISFA, which is 7% higher than the performance of OpenFace 2.0 while maintaining highly-efficient inference that runs two times faster than OpenFace 2.0. Despite being compact, our model also demonstrates competitive performance to state-of-the-art facial expression analysis methods on AffecNet, FFHQ, and RAF-DB. Our code will be released at https://github.com/ihp-lab/LibreFace

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com