Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parameterized Complexity of Fair Bisection: FPT-Approximation meets Unbreakability (2308.10657v1)

Published 21 Aug 2023 in cs.DS

Abstract: In the Minimum Bisection problem, input is a graph $G$ and the goal is to partition the vertex set into two parts $A$ and $B$, such that $||A|-|B|| \le 1$ and the number $k$ of edges between $A$ and $B$ is minimized. This problem can be viewed as a clustering problem where edges represent similarity, and the task is to partition the vertices into two equally sized clusters, while minimizing the number of pairs of similar objects that end up in different clusters. In this paper, we initiate the study of a fair version of Minimum Bisection. In this problem, the vertices of the graph are colored using one of $c \ge 1$ colors. The goal is to find a bisection $(A, B)$ with at most $k$ edges between the parts, such that for each color $i\in [c]$, $A$ has exactly $r_i$ vertices of color $i$. We first show that Fair Bisection is $W$[1]-hard parameterized by $c$ even when $k = 0$. On the other hand, our main technical contribution shows that is that this hardness result is simply a consequence of the very strict requirement that each color class $i$ has {\em exactly} $r_i$ vertices in $A$. In particular, we give an $f(k,c,\epsilon)n{O(1)}$ time algorithm that finds a balanced partition $(A, B)$ with at most $k$ edges between them, such that for each color $i\in [c]$, there are at most $(1\pm \epsilon)r_i$ vertices of color $i$ in $A$. Our approximation algorithm is best viewed as a proof of concept that the technique introduced by [Lampis, ICALP '18] for obtaining FPT-approximation algorithms for problems of bounded tree-width or clique-width can be efficiently exploited even on graphs of unbounded width. The key insight is that the technique of Lampis is applicable on tree decompositions with unbreakable bags (as introduced in [Cygan et al., SIAM Journal on Computing '14]). Along the way, we also derive a combinatorial result regarding tree decompositions of graphs.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.