Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Real-time Monocular Depth Estimation on Embedded Systems (2308.10569v2)

Published 21 Aug 2023 in cs.CV

Abstract: Depth sensing is of paramount importance for unmanned aerial and autonomous vehicles. Nonetheless, contemporary monocular depth estimation methods employing complex deep neural networks within Convolutional Neural Networks are inadequately expedient for real-time inference on embedded platforms. This paper endeavors to surmount this challenge by proposing two efficient and lightweight architectures, RT-MonoDepth and RT-MonoDepth-S, thereby mitigating computational complexity and latency. Our methodologies not only attain accuracy comparable to prior depth estimation methods but also yield faster inference speeds. Specifically, RT-MonoDepth and RT-MonoDepth-S achieve frame rates of 18.4&30.5 FPS on NVIDIA Jetson Nano and 253.0&364.1 FPS on Jetson AGX Orin, utilizing a single RGB image of resolution 640x192. The experimental results underscore the superior accuracy and faster inference speed of our methods in comparison to existing fast monocular depth estimation methodologies on the KITTI dataset.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.