Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Thompson Sampling for Real-Valued Combinatorial Pure Exploration of Multi-Armed Bandit (2308.10238v3)

Published 20 Aug 2023 in cs.LG and stat.ML

Abstract: We study the real-valued combinatorial pure exploration of the multi-armed bandit (R-CPE-MAB) problem. In R-CPE-MAB, a player is given $d$ stochastic arms, and the reward of each arm $s\in{1, \ldots, d}$ follows an unknown distribution with mean $\mu_s$. In each time step, a player pulls a single arm and observes its reward. The player's goal is to identify the optimal \emph{action} $\boldsymbol{\pi}{*} = \argmax_{\boldsymbol{\pi} \in \mathcal{A}} \boldsymbol{\mu}{\top}\boldsymbol{\pi}$ from a finite-sized real-valued \emph{action set} $\mathcal{A}\subset \mathbb{R}{d}$ with as few arm pulls as possible. Previous methods in the R-CPE-MAB assume that the size of the action set $\mathcal{A}$ is polynomial in $d$. We introduce an algorithm named the Generalized Thompson Sampling Explore (GenTS-Explore) algorithm, which is the first algorithm that can work even when the size of the action set is exponentially large in $d$. We also introduce a novel problem-dependent sample complexity lower bound of the R-CPE-MAB problem, and show that the GenTS-Explore algorithm achieves the optimal sample complexity up to a problem-dependent constant factor.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: