Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Computing the Vapnik Chervonenkis Dimension for Non-Discrete Settings (2308.10041v1)

Published 19 Aug 2023 in cs.DS, cs.CC, and cs.LG

Abstract: In 1984, Valiant [ 7 ] introduced the Probably Approximately Correct (PAC) learning framework for boolean function classes. Blumer et al. [ 2] extended this model in 1989 by introducing the VC dimension as a tool to characterize the learnability of PAC. The VC dimension was based on the work of Vapnik and Chervonenkis in 1971 [8 ], who introduced a tool called the growth function to characterize the shattering property. Researchers have since determined the VC dimension for specific classes, and efforts have been made to develop an algorithm that can calculate the VC dimension for any concept class. In 1991, Linial, Mansour, and Rivest [4] presented an algorithm for computing the VC dimension in the discrete setting, assuming that both the concept class and domain set were finite. However, no attempts had been made to design an algorithm that could compute the VC dimension in the general setting.Therefore, our work focuses on developing a method to approximately compute the VC dimension without constraints on the concept classes or their domain set. Our approach is based on our finding that the Empirical Risk Minimization (ERM) learning paradigm can be used as a new tool to characterize the shattering property of a concept class.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.