Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Physics-guided training of GAN to improve accuracy in airfoil design synthesis (2308.10038v1)

Published 19 Aug 2023 in cs.LG

Abstract: Generative adversarial networks (GAN) have recently been used for a design synthesis of mechanical shapes. A GAN sometimes outputs physically unreasonable shapes. For example, when a GAN model is trained to output airfoil shapes that indicate required aerodynamic performance, significant errors occur in the performance values. This is because the GAN model only considers data but does not consider the aerodynamic equations that lie under the data. This paper proposes the physics-guided training of the GAN model to guide the model to learn physical validity. Physical validity is computed using general-purpose software located outside the neural network model. Such general-purpose software cannot be used in physics-informed neural network frameworks, because physical equations must be implemented inside the neural network models. Additionally, a limitation of generative models is that the output data are similar to the training data and cannot generate completely new shapes. However, because the proposed model is guided by a physical model and does not use a training dataset, it can generate completely new shapes. Numerical experiments show that the proposed model drastically improves the accuracy. Moreover, the output shapes differ from those of the training dataset but still satisfy the physical validity, overcoming the limitations of existing GAN models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.