Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dual Branch Deep Learning Network for Detection and Stage Grading of Diabetic Retinopathy (2308.09945v2)

Published 19 Aug 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Diabetic retinopathy is a severe complication of diabetes that can lead to permanent blindness if not treated promptly. Early and accurate diagnosis of the disease is essential for successful treatment. This paper introduces a deep learning method for the detection and stage grading of diabetic retinopathy, using a single fundus retinal image. Our model utilizes transfer learning, employing two state-of-the-art pre-trained models as feature extractors and fine-tuning them on a new dataset. The proposed model is trained on a large multi-center dataset, including the APTOS 2019 dataset, obtained from publicly available sources. It achieves remarkable performance in diabetic retinopathy detection and stage classification on the APTOS 2019, outperforming the established literature. For binary classification, the proposed approach achieves an accuracy of 98.50, a sensitivity of 99.46, and a specificity of 97.51. In stage grading, it achieves a quadratic weighted kappa of 93.00, an accuracy of 89.60, a sensitivity of 89.60, and a specificity of 97.72. The proposed approach serves as a reliable screening and stage grading tool for diabetic retinopathy, offering significant potential to enhance clinical decision-making and patient care.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. I. D. Federation. Idf diabetes atlas 10th edition 2021 [online] (2021).
  2. doi:10.1016/j.ophtha.2021.04.027.
  3. People with diabetes can prevent vision loss (4 2019). URL https://www.nei.nih.gov/sites/default/files/2019-06/diabetes-prevent-vision-loss.pdf
  4. doi:10.1093/fampra/cmx020.
  5. doi:10.1038/sj.neo.7900071.
  6. doi:10.1155/2013/434560.
  7. doi:10.1073/pnas.1500185112.
  8. doi:10.1177/1932296816629491.
  9. doi:10.3109/08820538.2013.825727.
  10. doi:10.3129/I08-120.
  11. doi:10.1089/tmj.2012.0313.
  12. doi:10.1001/jama.2016.17216.
  13. doi:10.1001/jama.2017.18152.
  14. doi:10.1038/nature14539.
  15. doi:10.1016/j.compeleceng.2018.07.042.
  16. doi:10.1016/j.ophtha.2017.02.008.
  17. doi:10.1016/j.ophtha.2018.01.034.
  18. Aptos 2019 blindness detection (2019). URL https://kaggle.com/competitions/aptos2019-blindness-detection
  19. doi:10.5120/5503-7503.
  20. doi:10.1007/978-3-319-13731-5_62.
  21. doi:10.1109/CCECE.2018.8447809.
  22. doi:10.5566/ias.1155.
  23. doi:10.7717/PEERJ-CS.456.
  24. doi:10.5244/C.21.15.
  25. Diabetic retinopathy 224x224 (2019 data). URL https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-2019-data
  26. doi:10.3390/molecules22122054.
  27. Diabetic retinopathy detection. URL https://www.kaggle.com/c/diabetic-retinopathy-detection
  28. doi:10.1155/2020/9139713.
  29. doi:10.1016/j.bspc.2021.102600.
  30. doi:10.1155/2021/1155116.
  31. doi:10.1016/j.compbiomed.2019.103537.
  32. doi:10.1007/s11263-015-0816-y.
  33. doi:10.1109/CAST.2016.7914977.
  34. doi:10.18280/ria.340308.
  35. doi:10.1109/ISSPIT47144.2019.9001846.
  36. doi:10.1007/978-981-15-5788-0_64.
  37. doi:10.1109/IST48021.2019.9010333.
  38. doi:10.1109/ACCESS.2019.2947484.
  39. doi:10.3390/electronics9060914.
  40. doi:10.1007/s11760-021-01904-7.
  41. doi:10.1016/j.compbiomed.2022.105602.
  42. doi:10.3390/data3030025.
  43. doi:10.1109/CVPR.2016.90.
  44. doi:10.1109/CVPR.2017.195.
  45. doi:10.1109/CVPR.2015.7298594.
  46. doi:10.1109/CVPR.2017.243.
  47. doi:10.3390/info11020125.
  48. doi:10.1016/j.patrec.2021.07.017.
  49. doi:10.1037/h0026256.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube