Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

TDG: Text-guided Domain Generalization (2308.09931v1)

Published 19 Aug 2023 in cs.CV

Abstract: Domain generalization (DG) attempts to generalize a model trained on single or multiple source domains to the unseen target domain. Benefiting from the success of Visual-and-Language Pre-trained models in recent years, we argue that it is crucial for domain generalization by introducing extra text information. In this paper, we develop a novel Text-guided Domain Generalization (TDG) paradigm for domain generalization, which includes three following aspects. Specifically, we first devise an automatic words generation method to extend the description of current domains with novel domain-relevant words. Then, we embed the generated domain information into the text feature space, by the proposed prompt learning-based text feature generation method, which shares a common representation space with the image feature. Finally, we utilize both input image features and generated text features to train a specially designed classifier that generalizes well on unseen target domains, while the image encoder is also updated under the supervision of gradients back propagated from the classifier. Our experimental results show that the techniques incorporated by TDG contribute to the performance in an easy implementation manner. Experimental results on several domain generalization benchmarks show that our proposed framework achieves superior performance by effectively leveraging generated text information in domain generalization.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)