The Impact of Background Removal on Performance of Neural Networks for Fashion Image Classification and Segmentation (2308.09764v2)
Abstract: Fashion understanding is a hot topic in computer vision, with many applications having great business value in the market. Fashion understanding remains a difficult challenge for computer vision due to the immense diversity of garments and various scenes and backgrounds. In this work, we try removing the background from fashion images to boost data quality and increase model performance. Having fashion images of evident persons in fully visible garments, we can utilize Salient Object Detection to achieve the background removal of fashion data to our expectations. A fashion image with the background removed is claimed as the "rembg" image, contrasting with the original one in the fashion dataset. We conducted extensive comparative experiments with these two types of images on multiple aspects of model training, including model architectures, model initialization, compatibility with other training tricks and data augmentations, and target task types. Our experiments show that background removal can effectively work for fashion data in simple and shallow networks that are not susceptible to overfitting. It can improve model accuracy by up to 5% in the classification on the FashionStyle14 dataset when training models from scratch. However, background removal does not perform well in deep neural networks due to incompatibility with other regularization techniques like batch normalization, pre-trained initialization, and data augmentations introducing randomness. The loss of background pixels invalidates many existing training tricks in the model training, adding the risk of overfitting for deep models.
- W. Wang, Q. Lai, H. Fu, J. Shen, H. Ling, and R. Yang, “Salient Object Detection in the Deep Learning Era: An In-Depth Survey,” arXiv:1904.09146 [cs], Jan. 2021, arXiv: 1904.09146. [Online]. Available: http://arxiv.org/abs/1904.09146
- M. Takagi, E. Simo-Serra, S. Iizuka, and H. Ishikawa, “What Makes a Style: Experimental Analysis of Fashion Prediction,” in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Venice: IEEE, Oct. 2017, pp. 2247–2253. [Online]. Available: http://ieeexplore.ieee.org/document/8265473/
- M. Jia, M. Shi, M. Sirotenko, Y. Cui, C. Cardie, B. Hariharan, H. Adam, and S. Belongie, “Fashionpedia: Ontology, Segmentation, and an Attribute Localization Dataset,” arXiv:2004.12276 [cs, eess], Jul. 2020, arXiv: 2004.12276 version: 2. [Online]. Available: http://arxiv.org/abs/2004.12276
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
- V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,” arXiv:1603.07285 [cs, stat], Jan. 2018, arXiv: 1603.07285. [Online]. Available: http://arxiv.org/abs/1603.07285
- K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv:1409.1556 [cs], Apr. 2015, arXiv: 1409.1556 version: 6. [Online]. Available: http://arxiv.org/abs/1409.1556
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015, arXiv: 1512.03385 version: 1. [Online]. Available: http://arxiv.org/abs/1512.03385
- H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He, J. Mueller, R. Manmatha, M. Li, and A. Smola, “ResNeSt: Split-Attention Networks,” arXiv:2004.08955 [cs], Dec. 2020, arXiv: 2004.08955 version: 2. [Online]. Available: http://arxiv.org/abs/2004.08955
- X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand, “U$^2$-Net: Going Deeper with Nested U-Structure for Salient Object Detection,” Pattern Recognition, vol. 106, p. 107404, Oct. 2020, arXiv: 2005.09007 version: 2. [Online]. Available: http://arxiv.org/abs/2005.09007
- D. Gatis, “Rembg,” Feb. 2022, original-date: 2020-08-10T14:38:24Z. [Online]. Available: https://github.com/danielgatis/rembg
- “Openmmlab: Officially endorsed projects.” [Online]. Available: https://openmmlab.com/codebase
- MMClassification Contributors, “OpenMMLab’s Image Classification Toolbox and Benchmark,” Jul. 2020, original-date: 2020-07-09T16:25:04Z. [Online]. Available: https://github.com/open-mmlab/mmclassification
- MMDetection Contributors, “OpenMMLab Detection Toolbox and Benchmark,” Aug. 2018, original-date: 2018-08-22T07:06:06Z. [Online]. Available: https://github.com/open-mmlab/mmdetection
- MMSegmentation Contributors, “OpenMMLab Semantic Segmentation Toolbox and Benchmark,” Jul. 2020, original-date: 2020-06-14T04:32:33Z. [Online]. Available: https://github.com/open-mmlab/mmsegmentation
- E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “RandAugment: Practical automated data augmentation with a reduced search space,” arXiv:1909.13719 [cs], Nov. 2019, arXiv: 1909.13719 version: 2. [Online]. Available: http://arxiv.org/abs/1909.13719
- S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv:1502.03167 [cs], Mar. 2015, arXiv: 1502.03167 version: 3. [Online]. Available: http://arxiv.org/abs/1502.03167
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” arXiv:2103.14030 [cs], Aug. 2021, arXiv: 2103.14030 version: 2. [Online]. Available: http://arxiv.org/abs/2103.14030
- Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, F. Wei, and B. Guo, “Swin Transformer V2: Scaling Up Capacity and Resolution,” arXiv:2111.09883 [cs], Nov. 2021, arXiv: 2111.09883 version: 1. [Online]. Available: http://arxiv.org/abs/2111.09883
- I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts,” arXiv:1608.03983 [cs, math], May 2017, arXiv: 1608.03983. [Online]. Available: http://arxiv.org/abs/1608.03983
- ——, “Decoupled Weight Decay Regularization,” arXiv:1711.05101 [cs, math], Jan. 2019, arXiv: 1711.05101 version: 3. [Online]. Available: http://arxiv.org/abs/1711.05101
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” arXiv:2010.11929 [cs], Jun. 2021, arXiv: 2010.11929 version: 2. [Online]. Available: http://arxiv.org/abs/2010.11929
- T. DeVries and G. W. Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout,” arXiv:1708.04552 [cs], Nov. 2017, arXiv: 1708.04552 version: 2. [Online]. Available: http://arxiv.org/abs/1708.04552
- S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features,” arXiv:1905.04899 [cs], Aug. 2019, arXiv: 1905.04899 version: 2. [Online]. Available: http://arxiv.org/abs/1905.04899
- H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond Empirical Risk Minimization,” arXiv:1710.09412 [cs, stat], Apr. 2018, arXiv: 1710.09412 version: 2. [Online]. Available: http://arxiv.org/abs/1710.09412
- “Albumentations,” May 2022, original-date: 2018-06-06T03:10:50Z. [Online]. Available: https://github.com/albumentations-team/albumentations
- S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image Segmentation Using Deep Learning: A Survey,” arXiv:2001.05566 [cs], Nov. 2020, arXiv: 2001.05566 version: 5. [Online]. Available: http://arxiv.org/abs/2001.05566
- K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” arXiv:1703.06870 [cs], Jan. 2018, arXiv: 1703.06870 version: 3. [Online]. Available: http://arxiv.org/abs/1703.06870
- S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated Residual Transformations for Deep Neural Networks,” arXiv:1611.05431 [cs], Apr. 2017, arXiv: 1611.05431 version: 2. [Online]. Available: http://arxiv.org/abs/1611.05431
- W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, “Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions,” arXiv:2102.12122 [cs], Aug. 2021, arXiv: 2102.12122. [Online]. Available: http://arxiv.org/abs/2102.12122