Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Lifting Integrality Gaps to SSEH Hardness for Globally Constrained CSPs (2308.09667v1)

Published 18 Aug 2023 in cs.DS

Abstract: A $\mu$-constrained Boolean Max-CSP$(\psi)$ instance is a Boolean Max-CSP instance on predicate $\psi:{0,1}r \to {0,1}$ where the objective is to find a labeling of relative weight exactly $\mu$ that maximizes the fraction of satisfied constraints. In this work, we study the approximability of constrained Boolean Max-CSPs via SDP hierarchies by relating the integrality gap of Max-CSP $(\psi)$ to its $\mu$-dependent approximation curve. Formally, assuming the Small-Set Expansion Hypothesis, we show that it is NP-hard to approximate $\mu$-constrained instances of Max-CSP($\psi$) up to factor ${\sf Gap}{\ell,\mu}(\psi)/\log(1/\mu)2$ (ignoring factors depending on $r$) for any $\ell \geq \ell(\mu,r)$. Here, ${\sf Gap}{\ell,\mu}(\psi)$ is the optimal integrality gap of $\ell$-round Lasserre relaxation for $\mu$-constrained Max-CSP($\psi$) instances. Our results are derived by combining the framework of Raghavendra [STOC 2008] along with more recent advances in rounding Lasserre relaxations and reductions from the Small-Set Expansion (SSE) problem. A crucial component of our reduction is a novel way of composing generic bias-dependent dictatorship tests with SSE, which could be of independent interest.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.