Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Faster Stochastic Variance Reduction Methods for Compositional MiniMax Optimization (2308.09604v2)

Published 18 Aug 2023 in cs.LG and math.OC

Abstract: This paper delves into the realm of stochastic optimization for compositional minimax optimization - a pivotal challenge across various machine learning domains, including deep AUC and reinforcement learning policy evaluation. Despite its significance, the problem of compositional minimax optimization is still under-explored. Adding to the complexity, current methods of compositional minimax optimization are plagued by sub-optimal complexities or heavy reliance on sizable batch sizes. To respond to these constraints, this paper introduces a novel method, called Nested STOchastic Recursive Momentum (NSTORM), which can achieve the optimal sample complexity of $O(\kappa3 /\epsilon3 )$ to obtain the $\epsilon$-accuracy solution. We also demonstrate that NSTORM can achieve the same sample complexity under the Polyak-\L ojasiewicz (PL)-condition - an insightful extension of its capabilities. Yet, NSTORM encounters an issue with its requirement for low learning rates, potentially constraining its real-world applicability in machine learning. To overcome this hurdle, we present ADAptive NSTORM (ADA-NSTORM) with adaptive learning rates. We demonstrate that ADA-NSTORM can achieve the same sample complexity but the experimental results show its more effectiveness. All the proposed complexities indicate that our proposed methods can match lower bounds to existing minimax optimizations, without requiring a large batch size in each iteration. Extensive experiments support the efficiency of our proposed methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.