Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Deep Equilibrium Object Detection (2308.09564v1)

Published 18 Aug 2023 in cs.CV

Abstract: Query-based object detectors directly decode image features into object instances with a set of learnable queries. These query vectors are progressively refined to stable meaningful representations through a sequence of decoder layers, and then used to directly predict object locations and categories with simple FFN heads. In this paper, we present a new query-based object detector (DEQDet) by designing a deep equilibrium decoder. Our DEQ decoder models the query vector refinement as the fixed point solving of an {implicit} layer and is equivalent to applying {infinite} steps of refinement. To be more specific to object decoding, we use a two-step unrolled equilibrium equation to explicitly capture the query vector refinement. Accordingly, we are able to incorporate refinement awareness into the DEQ training with the inexact gradient back-propagation (RAG). In addition, to stabilize the training of our DEQDet and improve its generalization ability, we devise the deep supervision scheme on the optimization path of DEQ with refinement-aware perturbation~(RAP). Our experiments demonstrate DEQDet converges faster, consumes less memory, and achieves better results than the baseline counterpart (AdaMixer). In particular, our DEQDet with ResNet50 backbone and 300 queries achieves the $49.5$ mAP and $33.0$ AP$_s$ on the MS COCO benchmark under $2\times$ training scheme (24 epochs).

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube