Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ReCon: Reducing Congestion in Job Recommendation using Optimal Transport (2308.09516v1)

Published 18 Aug 2023 in cs.IR

Abstract: Recommender systems may suffer from congestion, meaning that there is an unequal distribution of the items in how often they are recommended. Some items may be recommended much more than others. Recommenders are increasingly used in domains where items have limited availability, such as the job market, where congestion is especially problematic: Recommending a vacancy -- for which typically only one person will be hired -- to a large number of job seekers may lead to frustration for job seekers, as they may be applying for jobs where they are not hired. This may also leave vacancies unfilled and result in job market inefficiency. We propose a novel approach to job recommendation called ReCon, accounting for the congestion problem. Our approach is to use an optimal transport component to ensure a more equal spread of vacancies over job seekers, combined with a job recommendation model in a multi-objective optimization problem. We evaluated our approach on two real-world job market datasets. The evaluation results show that ReCon has good performance on both congestion-related (e.g., Congestion) and desirability (e.g., NDCG) measures.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube