Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Video-Instrument Synergistic Network for Referring Video Instrument Segmentation in Robotic Surgery (2308.09475v1)

Published 18 Aug 2023 in cs.CV

Abstract: Robot-assisted surgery has made significant progress, with instrument segmentation being a critical factor in surgical intervention quality. It serves as the building block to facilitate surgical robot navigation and surgical education for the next generation of operating intelligence. Although existing methods have achieved accurate instrument segmentation results, they simultaneously generate segmentation masks for all instruments, without the capability to specify a target object and allow an interactive experience. This work explores a new task of Referring Surgical Video Instrument Segmentation (RSVIS), which aims to automatically identify and segment the corresponding surgical instruments based on the given language expression. To achieve this, we devise a novel Video-Instrument Synergistic Network (VIS-Net) to learn both video-level and instrument-level knowledge to boost performance, while previous work only used video-level information. Meanwhile, we design a Graph-based Relation-aware Module (GRM) to model the correlation between multi-modal information (i.e., textual description and video frame) to facilitate the extraction of instrument-level information. We are also the first to produce two RSVIS datasets to promote related research. Our method is verified on these datasets, and experimental results exhibit that the VIS-Net can significantly outperform existing state-of-the-art referring segmentation methods. Our code and our datasets will be released upon the publication of this work.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.