Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SpOctA: A 3D Sparse Convolution Accelerator with Octree-Encoding-Based Map Search and Inherent Sparsity-Aware Processing (2308.09249v1)

Published 18 Aug 2023 in cs.AR

Abstract: Point-cloud-based 3D perception has attracted great attention in various applications including robotics, autonomous driving and AR/VR. In particular, the 3D sparse convolution (SpConv) network has emerged as one of the most popular backbones due to its excellent performance. However, it poses severe challenges to real-time perception on general-purpose platforms, such as lengthy map search latency, high computation cost, and enormous memory footprint. In this paper, we propose SpOctA, a SpConv accelerator that enables high-speed and energy-efficient point cloud processing. SpOctA parallelizes the map search by utilizing algorithm-architecture co-optimization based on octree encoding, thereby achieving 8.8-21.2x search speedup. It also attenuates the heavy computational workload by exploiting inherent sparsity of each voxel, which eliminates computation redundancy and saves 44.4-79.1% processing latency. To optimize on-chip memory management, a SpConv-oriented non-uniform caching strategy is introduced to reduce external memory access energy by 57.6% on average. Implemented on a 40nm technology and extensively evaluated on representative benchmarks, SpOctA rivals the state-of-the-art SpConv accelerators by 1.1-6.9x speedup with 1.5-3.1x energy efficiency improvement.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube