Papers
Topics
Authors
Recent
2000 character limit reached

Mitigating Misinformation Spreading in Social Networks Via Edge Blocking

Published 17 Aug 2023 in cs.DS and cs.SI | (2308.08860v1)

Abstract: The wide adoption of social media platforms has brought about numerous benefits for communication and information sharing. However, it has also led to the rapid spread of misinformation, causing significant harm to individuals, communities, and society at large. Consequently, there has been a growing interest in devising efficient and effective strategies to contain the spread of misinformation. One popular countermeasure is blocking edges in the underlying network. We model the spread of misinformation using the classical Independent Cascade model and study the problem of minimizing the spread by blocking a given number of edges. We prove that this problem is computationally hard, but we propose an intuitive community-based algorithm, which aims to detect well-connected communities in the network and disconnect the inter-community edges. Our experiments on various real-world social networks demonstrate that the proposed algorithm significantly outperforms the prior methods, which mostly rely on centrality measures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.