Answering Ambiguous Questions with a Database of Questions, Answers, and Revisions (2308.08661v1)
Abstract: Many open-domain questions are under-specified and thus have multiple possible answers, each of which is correct under a different interpretation of the question. Answering such ambiguous questions is challenging, as it requires retrieving and then reasoning about diverse information from multiple passages. We present a new state-of-the-art for answering ambiguous questions that exploits a database of unambiguous questions generated from Wikipedia. On the challenging ASQA benchmark, which requires generating long-form answers that summarize the multiple answers to an ambiguous question, our method improves performance by 15% (relative improvement) on recall measures and 10% on measures which evaluate disambiguating questions from predicted outputs. Retrieving from the database of generated questions also gives large improvements in diverse passage retrieval (by matching user questions q to passages p indirectly, via questions q' generated from p).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.