Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Non-monotone Sequential Submodular Maximization (2308.08641v2)

Published 16 Aug 2023 in cs.LG and cs.DS

Abstract: In this paper, we study a fundamental problem in submodular optimization, which is called sequential submodular maximization. Specifically, we aim to select and rank a group of $k$ items from a ground set $V$ such that the weighted summation of $k$ (possibly non-monotone) submodular functions $f_1, \cdots ,f_k: 2V \rightarrow \mathbb{R}+$ is maximized, here each function $f_j$ takes the first $j$ items from this sequence as input. The existing research on sequential submodular maximization has predominantly concentrated on the monotone setting, assuming that the submodular functions are non-decreasing. However, in various real-world scenarios, like diversity-aware recommendation systems, adding items to an existing set might negatively impact the overall utility. In response, this paper pioneers the examination of the aforementioned problem with non-monotone submodular functions and offers effective solutions for both flexible and fixed length constraints, as well as a special case with identical utility functions. The empirical evaluations further validate the effectiveness of our proposed algorithms in the domain of video recommendations. The results of this research have implications in various fields, including recommendation systems and assortment optimization, where the ordering of items significantly impacts the overall value obtained.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube