Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PEvoLM: Protein Sequence Evolutionary Information Language Model (2308.08578v1)

Published 16 Aug 2023 in q-bio.QM, cs.AI, and cs.LG

Abstract: With the exponential increase of the protein sequence databases over time, multiple-sequence alignment (MSA) methods, like PSI-BLAST, perform exhaustive and time-consuming database search to retrieve evolutionary information. The resulting position-specific scoring matrices (PSSMs) of such search engines represent a crucial input to many ML models in the field of bioinformatics and computational biology. A protein sequence is a collection of contiguous tokens or characters called amino acids (AAs). The analogy to natural language allowed us to exploit the recent advancements in the field of NLP and therefore transfer NLP state-of-the-art algorithms to bioinformatics. This research presents an Embedding LLM (ELMo), converting a protein sequence to a numerical vector representation. While the original ELMo trained a 2-layer bidirectional Long Short-Term Memory (LSTMs) network following a two-path architecture, one for the forward and the second for the backward pass, by merging the idea of PSSMs with the concept of transfer-learning, this work introduces a novel bidirectional LLM (bi-LM) with four times less free parameters and using rather a single path for both passes. The model was trained not only on predicting the next AA but also on the probability distribution of the next AA derived from similar, yet different sequences as summarized in a PSSM, simultaneously for multi-task learning, hence learning evolutionary information of protein sequences as well. The network architecture and the pre-trained model are made available as open source under the permissive MIT license on GitHub at https://github.com/issararab/PEvoLM.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)