Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Knowledge-Enhanced Multi-Label Few-Shot Product Attribute-Value Extraction (2308.08413v1)

Published 16 Aug 2023 in cs.IR and cs.CL

Abstract: Existing attribute-value extraction (AVE) models require large quantities of labeled data for training. However, new products with new attribute-value pairs enter the market every day in real-world e-Commerce. Thus, we formulate AVE in multi-label few-shot learning (FSL), aiming to extract unseen attribute value pairs based on a small number of training examples. We propose a Knowledge-Enhanced Attentive Framework (KEAF) based on prototypical networks, leveraging the generated label description and category information to learn more discriminative prototypes. Besides, KEAF integrates with hybrid attention to reduce noise and capture more informative semantics for each class by calculating the label-relevant and query-related weights. To achieve multi-label inference, KEAF further learns a dynamic threshold by integrating the semantic information from both the support set and the query set. Extensive experiments with ablation studies conducted on two datasets demonstrate that KEAF outperforms other SOTA models for information extraction in FSL. The code can be found at: https://github.com/gjiaying/KEAF

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube