Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Bayesian Satisficing (2308.08291v1)

Published 16 Aug 2023 in cs.LG and cs.AI

Abstract: Distributional shifts pose a significant challenge to achieving robustness in contemporary machine learning. To overcome this challenge, robust satisficing (RS) seeks a robust solution to an unspecified distributional shift while achieving a utility above a desired threshold. This paper focuses on the problem of RS in contextual Bayesian optimization when there is a discrepancy between the true and reference distributions of the context. We propose a novel robust Bayesian satisficing algorithm called RoBOS for noisy black-box optimization. Our algorithm guarantees sublinear lenient regret under certain assumptions on the amount of distribution shift. In addition, we define a weaker notion of regret called robust satisficing regret, in which our algorithm achieves a sublinear upper bound independent of the amount of distribution shift. To demonstrate the effectiveness of our method, we apply it to various learning problems and compare it to other approaches, such as distributionally robust optimization.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube