Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Benchmarking Power-Performance Characteristics of Federated Learning Clients (2308.08270v1)

Published 16 Aug 2023 in cs.DC and cs.PF

Abstract: Federated Learning (FL) is a decentralized machine learning approach where local models are trained on distributed clients, allowing privacy-preserving collaboration by sharing model updates instead of raw data. However, the added communication overhead and increased training time caused by heterogenous data distributions results in higher energy consumption and carbon emissions for achieving similar model performance than traditional machine learning. At the same time, efficient usage of available energy is an important requirement for battery constrained devices. Because of this, many different approaches on energy-efficient and carbon-efficient FL scheduling and client selection have been published in recent years. However, most of this research oversimplifies power performance characteristics of clients by assuming that they always require the same amount of energy per processed sample throughout training. This overlooks real-world effects arising from operating devices under different power modes or the side effects of running other workloads in parallel. In this work, we take a first look on the impact of such factors and discuss how better power-performance estimates can improve energy-efficient and carbon-efficient FL scheduling.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.