Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

MoCoSA: Momentum Contrast for Knowledge Graph Completion with Structure-Augmented Pre-trained Language Models (2308.08204v1)

Published 16 Aug 2023 in cs.CL

Abstract: Knowledge Graph Completion (KGC) aims to conduct reasoning on the facts within knowledge graphs and automatically infer missing links. Existing methods can mainly be categorized into structure-based or description-based. On the one hand, structure-based methods effectively represent relational facts in knowledge graphs using entity embeddings. However, they struggle with semantically rich real-world entities due to limited structural information and fail to generalize to unseen entities. On the other hand, description-based methods leverage pre-trained LLMs (PLMs) to understand textual information. They exhibit strong robustness towards unseen entities. However, they have difficulty with larger negative sampling and often lag behind structure-based methods. To address these issues, in this paper, we propose Momentum Contrast for knowledge graph completion with Structure-Augmented pre-trained LLMs (MoCoSA), which allows the PLM to perceive the structural information by the adaptable structure encoder. To improve learning efficiency, we proposed momentum hard negative and intra-relation negative sampling. Experimental results demonstrate that our approach achieves state-of-the-art performance in terms of mean reciprocal rank (MRR), with improvements of 2.5% on WN18RR and 21% on OpenBG500.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.