Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Privacy-Preserving Push-Pull Method for Decentralized Optimization via State Decomposition (2308.08164v1)

Published 16 Aug 2023 in eess.SY and cs.SY

Abstract: Distributed optimization is manifesting great potential in multiple fields, e.g., machine learning, control, and resource allocation. Existing decentralized optimization algorithms require sharing explicit state information among the agents, which raises the risk of private information leakage. To ensure privacy security, combining information security mechanisms, such as differential privacy and homomorphic encryption, with traditional decentralized optimization algorithms is a commonly used means. However, this would either sacrifice optimization accuracy or incur heavy computational burden. To overcome these shortcomings, we develop a novel privacy-preserving decentralized optimization algorithm, called PPSD, that combines gradient tracking with a state decomposition mechanism. Specifically, each agent decomposes its state associated with the gradient into two substates. One substate is used for interaction with neighboring agents, and the other substate containing private information acts only on the first substate and thus is entirely agnostic to other agents. For the strongly convex and smooth objective functions, PPSD attains a $R$-linear convergence rate. Moreover, the algorithm can preserve the agents' private information from being leaked to honest-but-curious neighbors. Simulations further confirm the results.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.