Papers
Topics
Authors
Recent
2000 character limit reached

Benchmarking Adversarial Robustness of Compressed Deep Learning Models

Published 16 Aug 2023 in cs.LG | (2308.08160v1)

Abstract: The increasing size of Deep Neural Networks (DNNs) poses a pressing need for model compression, particularly when employed on resource constrained devices. Concurrently, the susceptibility of DNNs to adversarial attacks presents another significant hurdle. Despite substantial research on both model compression and adversarial robustness, their joint examination remains underexplored. Our study bridges this gap, seeking to understand the effect of adversarial inputs crafted for base models on their pruned versions. To examine this relationship, we have developed a comprehensive benchmark across diverse adversarial attacks and popular DNN models. We uniquely focus on models not previously exposed to adversarial training and apply pruning schemes optimized for accuracy and performance. Our findings reveal that while the benefits of pruning enhanced generalizability, compression, and faster inference times are preserved, adversarial robustness remains comparable to the base model. This suggests that model compression while offering its unique advantages, does not undermine adversarial robustness.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.