Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Natural Evolution Strategies as a Black Box Estimator for Stochastic Variational Inference (2308.08053v1)

Published 15 Aug 2023 in cs.NE and cs.LG

Abstract: Stochastic variational inference and its derivatives in the form of variational autoencoders enjoy the ability to perform Bayesian inference on large datasets in an efficient manner. However, performing inference with a VAE requires a certain design choice (i.e. reparameterization trick) to allow unbiased and low variance gradient estimation, restricting the types of models that can be created. To overcome this challenge, an alternative estimator based on natural evolution strategies is proposed. This estimator does not make assumptions about the kind of distributions used, allowing for the creation of models that would otherwise not have been possible under the VAE framework.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.