Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamic Attention-Guided Diffusion for Image Super-Resolution (2308.07977v4)

Published 15 Aug 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Diffusion models in image Super-Resolution (SR) treat all image regions uniformly, which risks compromising the overall image quality by potentially introducing artifacts during denoising of less-complex regions. To address this, we propose ``You Only Diffuse Areas'' (YODA), a dynamic attention-guided diffusion process for image SR. YODA selectively focuses on spatial regions defined by attention maps derived from the low-resolution images and the current denoising time step. This time-dependent targeting enables a more efficient conversion to high-resolution outputs by focusing on areas that benefit the most from the iterative refinement process, i.e., detail-rich objects. We empirically validate YODA by extending leading diffusion-based methods SR3, DiffBIR, and SRDiff. Our experiments demonstrate new state-of-the-art performances in face and general SR tasks across PSNR, SSIM, and LPIPS metrics. As a side effect, we find that YODA reduces color shift issues and stabilizes training with small batches.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: