Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Near-Optimal Last-iterate Convergence of Policy Optimization in Zero-sum Polymatrix Markov games (2308.07873v2)

Published 15 Aug 2023 in cs.GT

Abstract: Computing approximate Nash equilibria in multi-player general-sum Markov games is a computationally intractable task. However, multi-player Markov games with certain cooperative or competitive structures might circumvent this intractability. In this paper, we focus on multi-player zero-sum polymatrix Markov games, where players interact in a pairwise fashion while remain overall competitive. To the best of our knowledge, we propose the first policy optimization algorithm called Entropy-Regularized Optimistic-Multiplicative-Weights-Update (ER-OMWU) for finding approximate Nash equilibria in finite-horizon zero-sum polymatrix Markov games with full information feedback. We provide last-iterate convergence guarantees for finding an $\epsilon$-approximate Nash equilibrium within $\tilde{O}(1/\epsilon)$ iterations, which is near-optimal compared to the optimal $O(1/\epsilon)$ iteration complexity in two-player zero-sum Markov games, which is a degenerate case of zero-sum polymatrix games with only two players involved. Our algorithm combines the regularized and optimistic learning dynamics with separated smooth value update within a single loop, where players update strategies in a symmetric and almost uncoupled manner. It provides a natural dynamics for finding equilibria and is more probable to be adapted to a sample-efficient and fully decentralized implementation where only partial information feedback is available in the future.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.