Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Nearly Quadratic-Time FPTAS for Knapsack (2308.07821v3)

Published 15 Aug 2023 in cs.DS

Abstract: We investigate the classic Knapsack problem and propose a fully polynomial-time approximation scheme (FPTAS) that runs in $\widetilde{O}(n + (1/\varepsilon)2)$ time. This improves upon the $\widetilde{O}(n + (1/\varepsilon){11/5})$-time algorithm by Deng, Jin, and Mao [\textit{Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms, 2023}]. Our algorithm is the best possible (up to a polylogarithmic factor) conditioned on the conjecture that $(\min, +)$-convolution has no truly subquadratic-time algorithm, since this conjecture implies that Knapsack has no $O((n + 1/\varepsilon){2-\delta})$-time FPTAS for any constant $\delta > 0$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Geometric applications of a matrix-searching algorithm. Algorithmica, 2(1):195–208, 1987. doi:10.1007/BF01840359.
  2. Capacitated Dynamic Programming: Faster Knapsack and Graph Algorithms. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132, pages 19:1–19:13, Dagstuhl, Germany, 2019. doi:10.4230/LIPIcs.ICALP.2019.19.
  3. Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229, pages 31:1–31:21, Dagstuhl, Germany, 2022. doi:10.4230/LIPIcs.ICALP.2022.31.
  4. Karl Bringmann. Knapsack with Small Items in Near-Quadratic Time, September 2023. arXiv:2308.03075.
  5. On Near-Linear-Time Algorithms for Dense Subset Sum. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 1777–1796. January 2021. doi:10.1137/1.9781611976465.107.
  6. Faster min-plus product for monotone instances. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2022), pages 1529–1542. ACM, 2022. doi:10.1145/3519935.3520057.
  7. Solving dense subset-sum problems by using analytical number theory. Journal of Complexity, 5(3):271–282, September 1989. doi:10.1016/0885-064X(89)90025-3.
  8. Subset sums, completeness and colorings, April 2021. arXiv:2104.14766.
  9. Mark Chaimovich. New algorithm for dense subset-sum problem. In Structure theory of set addition, number 258 in Astérisque. Société mathématique de France, 1999. URL: http://www.numdam.org/item/AST_1999__258__363_0/.
  10. Timothy M. Chan. Approximation schemes for 0-1 knapsack. In Proceedings of the 1st Symposium on Simplicity in Algorithms (SOSA 2018), volume 61, pages 5:1–5:12, 2018. doi:10.4230/OASIcs.SOSA.2018.5.
  11. Faster Algorithms for Bounded Knapsack and Bounded Subset Sum Via Fine-Grained Proximity Results, July 2023. arXiv:2307.12582.
  12. On problems equivalent to (min,+)-convolution. ACM Transactions on Algorithms, 15(1):1–25, January 2019. arXiv:1702.07669, doi:10.1145/3293465.
  13. Approximating Knapsack and Partition via Dense Subset Sums. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), Proceedings, pages 2961–2979. January 2023. doi:10.1137/1.9781611977554.ch113.
  14. Proximity Results and Faster Algorithms for Integer Programming Using the Steinitz Lemma. ACM Transactions on Algorithms, 16(1):5:1–5:14, November 2019. doi:10.1145/3340322.
  15. Gregory A Freiman. New analytical results in subset-sum problem. Discrete Mathematics, 114(1):205–217, April 1993. doi:10.1016/0012-365X(93)90367-3.
  16. An Almost Linear-Time Algorithm for the Dense Subset-Sum Problem. SIAM Journal on Computing, 20(6):1157–1189, December 1991. doi:10.1137/0220072.
  17. Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems. Journal of the ACM, 22(4):463–468, October 1975. doi:10.1145/321906.321909.
  18. Ce Jin. An improved FPTAS for 0-1 knapsack. In Proceedings of 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132, pages 76:1–76:14, 2019. doi:10.4230/LIPIcs.ICALP.2019.76.
  19. Ce Jin. 0-1 Knapsack in Nearly Quadratic Time, August 2023. arXiv:2308.04093.
  20. Klaus Jansen and Stefan E. J. Kraft. A faster FPTAS for the Unbounded Knapsack Problem. European Journal of Combinatorics, 68:148–174, February 2018. doi:10.1016/j.ejc.2017.07.016.
  21. Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US, Boston, MA, 1972. doi:10.1007/978-1-4684-2001-2_9.
  22. A New Fully Polynomial Time Approximation Scheme for the Knapsack Problem. Journal of Combinatorial Optimization, 3(1):59–71, July 1999. doi:10.1023/A:1009813105532.
  23. Improved Dynamic Programming in Connection with an FPTAS for the Knapsack Problem. Journal of Combinatorial Optimization, 8(1):5–11, March 2004. doi:10.1023/B:JOCO.0000021934.29833.6b.
  24. Knapsack Problems. Springer, 2004. doi:10.1007/978-3-540-24777-7.
  25. On the Fine-Grained Complexity of One-Dimensional Dynamic Programming. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80, pages 21:1–21:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.21.
  26. Eugene L. Lawler. Fast Approximation Algorithms for Knapsack Problems. Mathematics of Operations Research, 4(4):339–356, 1979. URL: https://www.jstor.org/stable/3689221.
  27. Xiao Mao. (1−ϵ)1italic-ϵ(1-\epsilon)( 1 - italic_ϵ )-Approximation of Knapsack in Nearly Quadratic Time, August 2023. arXiv:2308.07004.
  28. Knapsack and Subset Sum with Small Items. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198, pages 106:1–106:19, Dagstuhl, Germany, 2021. doi:10.4230/LIPIcs.ICALP.2021.106.
  29. Donguk Rhee. Faster fully polynomial approximation schemes for knapsack problems. PhD thesis, Massachusetts Institute of Technology, 2015. URL: https://api.semanticscholar.org/CorpusID:61901463.
  30. Sartaj Sahni. Approximate Algorithms for the 0/1 Knapsack Problem. Journal of the ACM, 22(1):115–124, January 1975. doi:10.1145/321864.321873.
  31. A. Sárközy. Finite addition theorems, I. Journal of Number Theory, 32(1):114–130, May 1989. doi:10.1016/0022-314X(89)90102-9.
  32. E. Szemerédi and V. H. Vu. Finite and Infinite Arithmetic Progressions in Sumsets. Annals of Mathematics, 163(1):1–35, 2006. URL: https://www.jstor.org/stable/20159950.
Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com