Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Review of Adversarial Attacks in Computer Vision (2308.07673v1)

Published 15 Aug 2023 in cs.CV, stat.CO, and stat.ML

Abstract: Deep neural networks have been widely used in various downstream tasks, especially those safety-critical scenario such as autonomous driving, but deep networks are often threatened by adversarial samples. Such adversarial attacks can be invisible to human eyes, but can lead to DNN misclassification, and often exhibits transferability between deep learning and machine learning models and real-world achievability. Adversarial attacks can be divided into white-box attacks, for which the attacker knows the parameters and gradient of the model, and black-box attacks, for the latter, the attacker can only obtain the input and output of the model. In terms of the attacker's purpose, it can be divided into targeted attacks and non-targeted attacks, which means that the attacker wants the model to misclassify the original sample into the specified class, which is more practical, while the non-targeted attack just needs to make the model misclassify the sample. The black box setting is a scenario we will encounter in practice.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.