Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The $L_q$-weighted dual programming of the linear Chebyshev approximation and an interior-point method (2308.07636v1)

Published 15 Aug 2023 in math.NA and cs.NA

Abstract: Given samples of a real or complex-valued function on a set of distinct nodes, the traditional linear Chebyshev approximation is to compute the best minimax approximation on a prescribed linear functional space. Lawson's iteration is a classical and well-known method for that task. However, Lawson's iteration converges linearly and in many cases, the convergence is very slow. In this paper, by the duality theory of linear programming, we first provide an elementary and self-contained proof for the well-known Alternation Theorem in the real case. Also, relying upon the Lagrange duality, we further establish an $L_q$-weighted dual programming for the linear Chebyshev approximation. In this framework, we revisit the convergence of Lawson's iteration, and moreover, propose a Newton type iteration, the interior-point method, to solve the $L_2$-weighted dual programming. Numerical experiments are reported to demonstrate its fast convergence and its capability in finding the reference points that characterize the unique minimax approximation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.