Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Boosting Semi-Supervised Learning by bridging high and low-confidence predictions (2308.07509v1)

Published 15 Aug 2023 in cs.CV and cs.AI

Abstract: Pseudo-labeling is a crucial technique in semi-supervised learning (SSL), where artificial labels are generated for unlabeled data by a trained model, allowing for the simultaneous training of labeled and unlabeled data in a supervised setting. However, several studies have identified three main issues with pseudo-labeling-based approaches. Firstly, these methods heavily rely on predictions from the trained model, which may not always be accurate, leading to a confirmation bias problem. Secondly, the trained model may be overfitted to easy-to-learn examples, ignoring hard-to-learn ones, resulting in the \textit{"Matthew effect"} where the already strong become stronger and the weak weaker. Thirdly, most of the low-confidence predictions of unlabeled data are discarded due to the use of a high threshold, leading to an underutilization of unlabeled data during training. To address these issues, we propose a new method called ReFixMatch, which aims to utilize all of the unlabeled data during training, thus improving the generalizability of the model and performance on SSL benchmarks. Notably, ReFixMatch achieves 41.05\% top-1 accuracy with 100k labeled examples on ImageNet, outperforming the baseline FixMatch and current state-of-the-art methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.