Human-centered NLP Fact-checking: Co-Designing with Fact-checkers using Matchmaking for AI (2308.07213v3)
Abstract: While many NLP techniques have been proposed for fact-checking, both academic research and fact-checking organizations report limited adoption of such NLP work due to poor alignment with fact-checker practices, values, and needs. To address this, we investigate a co-design method, Matchmaking for AI, to enable fact-checkers, designers, and NLP researchers to collaboratively identify what fact-checker needs should be addressed by technology, and to brainstorm ideas for potential solutions. Co-design sessions we conducted with 22 professional fact-checkers yielded a set of 11 design ideas that offer a "north star", integrating fact-checker criteria into novel NLP design concepts. These concepts range from pre-bunking misinformation, efficient and personalized monitoring misinformation, proactively reducing fact-checker potential biases, and collaborative writing fact-check reports. Our work provides new insights into both human-centered fact-checking research and practice and AI co-design research.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.