Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human-centered NLP Fact-checking: Co-Designing with Fact-checkers using Matchmaking for AI (2308.07213v3)

Published 14 Aug 2023 in cs.HC, cs.CL, and cs.CY

Abstract: While many NLP techniques have been proposed for fact-checking, both academic research and fact-checking organizations report limited adoption of such NLP work due to poor alignment with fact-checker practices, values, and needs. To address this, we investigate a co-design method, Matchmaking for AI, to enable fact-checkers, designers, and NLP researchers to collaboratively identify what fact-checker needs should be addressed by technology, and to brainstorm ideas for potential solutions. Co-design sessions we conducted with 22 professional fact-checkers yielded a set of 11 design ideas that offer a "north star", integrating fact-checker criteria into novel NLP design concepts. These concepts range from pre-bunking misinformation, efficient and personalized monitoring misinformation, proactively reducing fact-checker potential biases, and collaborative writing fact-check reports. Our work provides new insights into both human-centered fact-checking research and practice and AI co-design research.

Citations (9)

Summary

We haven't generated a summary for this paper yet.