Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

$(1-ε)$-Approximation of Knapsack in Nearly Quadratic Time (2308.07004v3)

Published 14 Aug 2023 in cs.DS

Abstract: Knapsack is one of the most fundamental problems in theoretical computer science. In the $(1 - \epsilon)$-approximation setting, although there is a fine-grained lower bound of $(n + 1 / \epsilon) ^ {2 - o(1)}$ based on the $(\min, +)$-convolution hypothesis ([K{\"u}nnemann, Paturi and Stefan Schneider, ICALP 2017] and [Cygan, Mucha, Wegrzycki and Wlodarczyk, 2017]), the best algorithm is randomized and runs in $\tilde O\left(n + (\frac{1}{\epsilon}){11/5}/2{\Omega(\sqrt{\log(1/\epsilon)})}\right)$ time [Deng, Jin and Mao, SODA 2023], and it remains an important open problem whether an algorithm with a running time that matches the lower bound (up to a sub-polynomial factor) exists. We answer the question positively by showing a deterministic $(1 - \epsilon)$-approximation scheme for knapsack that runs in $\tilde O(n + (1 / \epsilon) ^ {2})$ time. We first extend a known lemma in a recursive way to reduce the problem to $n \epsilon$-additive approximation for $n$ items with profits in $[1, 2)$. Then we give a simple efficient geometry-based algorithm for the reduced problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. SETH-based lower bounds for subset sum and bicriteria path. In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 41–57, 2019. doi:10.1137/1.9781611975482.3.
  2. Geometric applications of a matrix-searching algorithm. Algorithmica, 2(1):195–208, November 1987. doi:10.1007/BF01840359.
  3. Necklaces, convolutions, and x+y. Algorithmica, 69(2):294–314, June 2014. doi:10.1007/s00453-012-9734-3.
  4. Fast Convolutions for Near-Convex Sequences. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation (ISAAC 2023), volume 283 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:16, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.16, doi:10.4230/LIPIcs.ISAAC.2023.16.
  5. A fine-grained perspective on approximating subset sum and partition. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1797–1815. SIAM, 2021. doi:10.1137/1.9781611976465.108.
  6. On near-linear-time algorithms for dense subset sum. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1777–1796. SIAM, 2021. doi:10.1137/1.9781611976465.107.
  7. Timothy M. Chan. Approximation Schemes for 0-1 Knapsack. In Proceedings of the 1st Symposium on Simplicity in Algorithms (SOSA), pages 5:1–5:12, 2018. doi:10.4230/OASIcs.SOSA.2018.5.
  8. On problems equivalent to (min,+)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, January 2019. doi:10.1145/3293465.
  9. Deterministic apsp, orthogonal vectors, and more: Quickly derandomizing razborov-smolensky. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1246–1255, 2016. doi:10.1137/1.9781611974331.ch87.
  10. Computational Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000. URL: http://www.cs.uu.nl/geobook/.
  11. Approximating knapsack and partition via dense subset sums. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2961–2979, 2023. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch113, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch113, doi:10.1137/1.9781611977554.ch113.
  12. Computational complexity of approximation algorithms for combinatorial problems. In Jirí Becvár, editor, Mathematical Foundations of Computer Science 1979, Proceedings, 8th Symposium, Olomouc, Czechoslovakia, September 3-7, 1979, volume 74 of Lecture Notes in Computer Science, pages 292–300. Springer, 1979. doi:10.1007/3-540-09526-8_26.
  13. Fast approximation algorithms for the knapsack and sum of subset problems. Journal of the ACM (JACM), 22(4):463–468, October 1975. doi:10.1145/321906.321909.
  14. Ce Jin. An improved FPTAS for 0-1 knapsack. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 76:1–76:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.76.
  15. A faster fptas for the unbounded knapsack problem. European Journal of Combinatorics, 68:148 – 174, 2018. doi:10.1016/j.ejc.2017.07.016.
  16. Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer computations, pages 85–103. Springer, 1972.
  17. An efficient fully polynomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci., 66(2):349–370, 2003. doi:10.1016/S0022-0000(03)00006-0.
  18. Improved dynamic programming in connection with an fptas for the knapsack problem. Journal of Combinatorial Optimization, 8(1):5–11, March 2004. doi:10.1023/B:JOCO.0000021934.29833.6b.
  19. An efficient approximation scheme for the subset-sum problem. volume 1350, pages 394–403, 12 1997. doi:10.1007/3-540-63890-3_42.
  20. On the fine-grained complexity of one-dimensional dynamic programming. In Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP), pages 21:1–21:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.21.
  21. Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of Operations Research, 4(4):339–356, 1979. doi:10.1287/moor.4.4.339.
  22. Subquadratic approximation scheme for partition. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 70–88, 2019. doi:10.1137/1.9781611975482.5.
  23. Donguk Rhee. Faster fully polynomial approximation schemes for knapsack problems. Master’s thesis, Massachusetts Institute of Technology, 2015. URL: http://hdl.handle.net/1721.1/98564.
  24. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages 664–673, 2014. doi:10.1145/2591796.2591811.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com