Papers
Topics
Authors
Recent
2000 character limit reached

When Monte-Carlo Dropout Meets Multi-Exit: Optimizing Bayesian Neural Networks on FPGA (2308.06849v1)

Published 13 Aug 2023 in cs.LG and cs.AR

Abstract: Bayesian Neural Networks (BayesNNs) have demonstrated their capability of providing calibrated prediction for safety-critical applications such as medical imaging and autonomous driving. However, the high algorithmic complexity and the poor hardware performance of BayesNNs hinder their deployment in real-life applications. To bridge this gap, this paper proposes a novel multi-exit Monte-Carlo Dropout (MCD)-based BayesNN that achieves well-calibrated predictions with low algorithmic complexity. To further reduce the barrier to adopting BayesNNs, we propose a transformation framework that can generate FPGA-based accelerators for multi-exit MCD-based BayesNNs. Several novel optimization techniques are introduced to improve hardware performance. Our experiments demonstrate that our auto-generated accelerator achieves higher energy efficiency than CPU, GPU, and other state-of-the-art hardware implementations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.