Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A practical PINN framework for multi-scale problems with multi-magnitude loss terms (2308.06672v2)

Published 13 Aug 2023 in cs.LG

Abstract: For multi-scale problems, the conventional physics-informed neural networks (PINNs) face some challenges in obtaining available predictions. In this paper, based on PINNs, we propose a practical deep learning framework for multi-scale problems by reconstructing the loss function and associating it with special neural network architectures. New PINN methods derived from the improved PINN framework differ from the conventional PINN method mainly in two aspects. First, the new methods use a novel loss function by modifying the standard loss function through a (grouping) regularization strategy. The regularization strategy implements a different power operation on each loss term so that all loss terms composing the loss function are of approximately the same order of magnitude, which makes all loss terms be optimized synchronously during the optimization process. Second, for the multi-frequency or high-frequency problems, in addition to using the modified loss function, new methods upgrade the neural network architecture from the common fully-connected neural network to special network architectures such as the Fourier feature architecture, and the integrated architecture developed by us. The combination of the above two techniques leads to a significant improvement in the computational accuracy of multi-scale problems. Several challenging numerical examples demonstrate the effectiveness of the proposed methods. The proposed methods not only significantly outperform the conventional PINN method in terms of computational efficiency and computational accuracy, but also compare favorably with the state-of-the-art methods in the recent literature. The improved PINN framework facilitates better application of PINNs to multi-scale problems.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.