Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A preconditioned Krylov subspace method for linear inverse problems with general-form Tikhonov regularization (2308.06577v1)

Published 12 Aug 2023 in math.NA and cs.NA

Abstract: Tikhonov regularization is a widely used technique in solving inverse problems that can enforce prior properties on the desired solution. In this paper, we propose a Krylov subspace based iterative method for solving linear inverse problems with general-form Tikhonov regularization term $xTMx$, where $M$ is a positive semi-definite matrix. An iterative process called the preconditioned Golub-Kahan bidiagonalization (pGKB) is designed, which implicitly utilizes a proper preconditioner to generate a series of solution subspaces with desirable properties encoded by the regularizer $xTMx$. Based on the pGKB process, we propose an iterative regularization algorithm via projecting the original problem onto small dimensional solution subspaces. We analyze regularization effect of this algorithm, including the incorporation of prior properties of the desired solution into the solution subspace and the semi-convergence behavior of regularized solution. To overcome instabilities caused by semi-convergence, we further propose two pGKB based hybrid regularization algorithms. All the proposed algorithms are tested on both small-scale and large-scale linear inverse problems. Numerical results demonstrate that these iterative algorithms exhibit excellent performance, outperforming other state-of-the-art algorithms in some cases.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)