Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A parallel algorithm for Delaunay triangulation of moving points on the plane (2308.06484v1)

Published 12 Aug 2023 in cs.CG

Abstract: Delaunay Triangulation(DT) is one of the important geometric problems that is used in various branches of knowledge such as computer vision, terrain modeling, spatial clustering and networking. Kinetic data structures have become very important in computational geometry for dealing with moving objects. However, when dealing with moving points, maintaining a dynamically changing Delaunay triangulation can be challenging. So, In this case, we have to update triangulation repeatedly. If points move so far, it is better to rebuild the triangulation. One approach to handle moving points is to use an incremental algorithm. For the case that points move slowly, we can give a faster algorithm than rebuilding it. Furthermore, sequential algorithms can be computationally expensive for large datasets. So, one way to compute as fast as possible is parallelism. In this paper, we propose a parallel algorithm for moving points. we propose an algorithm that divides datasets into equal partitions and give every partition to one block. Each block satisfay the Delaunay constraints after each time step and uses delete and insert algorithms to do this. We show this algorithm works faster than serial algorithms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube