Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Latent Random Steps as Relaxations of Max-Cut, Min-Cut, and More (2308.06448v1)

Published 12 Aug 2023 in cs.LG and cs.SI

Abstract: Algorithms for node clustering typically focus on finding homophilous structure in graphs. That is, they find sets of similar nodes with many edges within, rather than across, the clusters. However, graphs often also exhibit heterophilous structure, as exemplified by (nearly) bipartite and tripartite graphs, where most edges occur across the clusters. Grappling with such structure is typically left to the task of graph simplification. We present a probabilistic model based on non-negative matrix factorization which unifies clustering and simplification, and provides a framework for modeling arbitrary graph structure. Our model is based on factorizing the process of taking a random walk on the graph. It permits an unconstrained parametrization, allowing for optimization via simple gradient descent. By relaxing the hard clustering to a soft clustering, our algorithm relaxes potentially hard clustering problems to a tractable ones. We illustrate our algorithm's capabilities on a synthetic graph, as well as simple unsupervised learning tasks involving bipartite and tripartite clustering of orthographic and phonological data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.