Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Better-Than-1.6-Approximation for Prize-Collecting TSP (2308.06254v3)

Published 11 Aug 2023 in cs.DS

Abstract: Prize-Collecting TSP is a variant of the traveling salesperson problem where one may drop vertices from the tour at the cost of vertex-dependent penalties. The quality of a solution is then measured by adding the length of the tour and the sum of all penalties of vertices that are not visited. We present a polynomial-time approximation algorithm with an approximation guarantee slightly below $1.6$, where the guarantee is with respect to the natural linear programming relaxation of the problem. This improves upon the previous best-known approximation ratio of $1.774$. Our approach is based on a known decomposition for solutions of this linear relaxation into rooted trees. Our algorithm takes a tree from this decomposition and then performs a pruning step before doing parity correction on the remainder. Using a simple analysis, we bound the approximation guarantee of the proposed algorithm by $(1+\sqrt{5})/2 \approx 1.618$, the golden ratio. With some additional technical care we further improve it to $1.599$. Furthermore, we show that for the path version of Prize-Collecting TSP (known as Prize-Collecting Stroll) our approach yields an approximation guarantee of 1.6662, improving upon the previous best-known guarantee of 1.926.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.