Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Exploiting locality in sparse polynomial approximation of parametric elliptic PDEs and application to parameterized domains (2308.06188v1)

Published 11 Aug 2023 in math.NA, cs.NA, and math.AP

Abstract: This work studies how the choice of the representation for parametric, spatially distributed inputs to elliptic partial differential equations (PDEs) affects the efficiency of a polynomial surrogate, based on Taylor expansion, for the parameter-to-solution map. In particular, we show potential advantages of representations using functions with localized supports. As model problem, we consider the steady-state diffusion equation, where the diffusion coefficient and right-hand side depend smoothly but potentially in a \textsl{highly nonlinear} way on a parameter $y\in [-1,1]{\mathbb{N}}$. Following previous work for affine parameter dependence and for the lognormal case, we use pointwise instead of norm-wise bounds to prove $\ellp$-summability of the Taylor coefficients of the solution. As application, we consider surrogates for solutions to elliptic PDEs on parametric domains. Using a mapping to a nominal configuration, this case fits in the general framework, and higher convergence rates can be attained when modeling the parametric boundary via spatially localized functions. The theoretical results are supported by numerical experiments for the parametric domain problem, illustrating the efficiency of the proposed approach and providing further insight on numerical aspects. Although the methods and ideas are carried out for the steady-state diffusion equation, they extend easily to other elliptic and parabolic PDEs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.