Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rethinking the Localization in Weakly Supervised Object Localization (2308.06161v1)

Published 11 Aug 2023 in cs.CV

Abstract: Weakly supervised object localization (WSOL) is one of the most popular and challenging tasks in computer vision. This task is to localize the objects in the images given only the image-level supervision. Recently, dividing WSOL into two parts (class-agnostic object localization and object classification) has become the state-of-the-art pipeline for this task. However, existing solutions under this pipeline usually suffer from the following drawbacks: 1) they are not flexible since they can only localize one object for each image due to the adopted single-class regression (SCR) for localization; 2) the generated pseudo bounding boxes may be noisy, but the negative impact of such noise is not well addressed. To remedy these drawbacks, we first propose to replace SCR with a binary-class detector (BCD) for localizing multiple objects, where the detector is trained by discriminating the foreground and background. Then we design a weighted entropy (WE) loss using the unlabeled data to reduce the negative impact of noisy bounding boxes. Extensive experiments on the popular CUB-200-2011 and ImageNet-1K datasets demonstrate the effectiveness of our method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.