Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Unveiling the Tricks: Automated Detection of Dark Patterns in Mobile Applications (2308.05898v2)

Published 11 Aug 2023 in cs.HC

Abstract: Mobile apps bring us many conveniences, such as online shopping and communication, but some use malicious designs called dark patterns to trick users into doing things that are not in their best interest. Many works have been done to summarize the taxonomy of these patterns and some have tried to mitigate the problems through various techniques. However, these techniques are either time-consuming, not generalisable or limited to specific patterns. To address these issues, we propose UIGuard, a knowledge-driven system that utilizes computer vision and natural language pattern matching to automatically detect a wide range of dark patterns in mobile UIs. Our system relieves the need for manually creating rules for each new UI/app and covers more types with superior performance. In detail, we integrated existing taxonomies into a consistent one, conducted a characteristic analysis and distilled knowledge from real-world examples and the taxonomy. Our UIGuard consists of two components, Property Extraction and Knowledge-Driven Dark Pattern Checker. We collected the first dark pattern dataset, which contains 4,999 benign UIs and 1,353 malicious UIs of 1,660 instances spanning 1,023 mobile apps. Our system achieves a superior performance in detecting dark patterns (micro averages: 0.82 in precision, 0.77 in recall, 0.79 in F1 score). A user study involving 58 participants further shows that \tool{} significantly increases users' knowledge of dark patterns.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.