Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Unleashing the Power of Extra-Tree Feature Selection and Random Forest Classifier for Improved Survival Prediction in Heart Failure Patients (2308.05765v1)

Published 9 Aug 2023 in cs.LG and cs.AI

Abstract: Heart failure is a life-threatening condition that affects millions of people worldwide. The ability to accurately predict patient survival can aid in early intervention and improve patient outcomes. In this study, we explore the potential of utilizing data pre-processing techniques and the Extra-Tree (ET) feature selection method in conjunction with the Random Forest (RF) classifier to improve survival prediction in heart failure patients. By leveraging the strengths of ET feature selection, we aim to identify the most significant predictors associated with heart failure survival. Using the public UCL Heart failure (HF) survival dataset, we employ the ET feature selection algorithm to identify the most informative features. These features are then used as input for grid search of RF. Finally, the tuned RF Model was trained and evaluated using different matrices. The approach was achieved 98.33% accuracy that is the highest over the exiting work.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.